Proof;
As we know
A⊆(A∪B) and B⊆(A∪B)
⇒ Int(A)⊆Int(A∪B) and In(B)⊆Int(A∪B)
∵ If A⊆B then Int(A)⊆Int(B)
⇒ (Int(A)∪Int(B))⊆Int(A∪B)
∵ If A⊆C and B⊆C then (A∪B)⊆C
Hence proved that (Int(A)∪Int(B))⊆Int(A∪B), where A and B are subsets of a topological space (X, T).